
Practical Intrusion-Tolerant Networks
Daniel Obenshain∗, Thomas Tantillo∗, Amy Babay, John Schultz,

Andrew Newell, Md. Endadul Hoque, Yair Amir, and Cristina Nita-Rotaru

Johns Hopkins University — {dano, tantillo, babay, yairamir}@cs.jhu.edu
Northeastern University — {c.nitarotaru}@neu.edu

Purdue University — {newella, mhoque}@cs.purdue.edu
Spread Concepts LLC — {jschultz, yairamir}@spreadconcepts.com
LTN Global Communications — {jschultz, yairamir}@ltnglobal.com

Abstract—As the Internet becomes an important part of the
infrastructure our society depends on, it is crucial to construct
networks that are able to work even when part of the network
is compromised. This paper presents the first practical intrusion-
tolerant network service, targeting high-value applications such
as monitoring and control of global clouds and management of
critical infrastructure for the power grid. We use an overlay ap-
proach to leverage the existing IP infrastructure while providing
the required resiliency and timeliness. Our solution overcomes
malicious attacks and compromises in both the underlying
network infrastructure and in the overlay itself. We deploy
and evaluate the intrusion-tolerant overlay implementation on
a global cloud spanning East Asia, North America, and Europe,
and make it publicly available.

I. INTRODUCTION

The Internet is becoming an important part of the infrastruc-
ture our society depends on, connecting the distributed systems
that manage our financial systems, commercial applications,
and important aspects of our social interactions. With critical
infrastructure control systems for power, gas, and water moving
to use IP networks as their communication infrastructure, and
with malicious attacks becoming more prevalent and more
sophisticated by the day, it is crucial to construct networks that
are resilient to the point of intrusion tolerance, able to work
even when part of the network is compromised.

In this paper, we present the first practical intrusion-tolerant
network service. The service targets high-value applications
that need to work at all times, even when part of the network is
compromised or under sophisticated attack. Examples include
monitoring and control of global clouds, management of critical
infrastructure such as the power grid, and military systems
such as national nuclear command and control.

Our solution leverages the existing IP network infrastructure,
making it practical for deployment. However, native IP network
infrastructure cannot provide the resiliency needed for an
intrusion-tolerant network. A single IP network is susceptible
to failures, attacks, and misconfigurations (malicious or benign)
that can render the entire network unusable. Internet routing
connecting multiple IP backbones is based on trust and there-
fore susceptible to routing attacks, such as BGP hijacking [1],
[2]. Recent sophisticated DDoS attacks, such as Coremelt [3]
and Crossfire [4], can target specific traffic flows and cause
them to experience severely degraded quality of service while
preventing the Internet from rerouting around the problem.

* Equal Contribution

Our solution uses an overlay approach to leverage the
existing IP network infrastructure while providing the required
resiliency and timeliness. An overlay running on top of
multiple IP networks can tolerate a complete failure of an
underlying network and is not bound to Internet routing,
allowing it to route around and overcome malicious attacks
and compromises in the Internet routing infrastructure in a
timely manner. However, the overlay must be constructed
with care. By using well-placed overlay nodes, diverse ISP
backbones, and multihoming at each overlay node, we can
construct a resilient architecture with enough redundancy to
prevent anything short of a complete simultaneous meltdown of
multiple ISP backbones from interrupting the ability to deliver
messages.

While an overlay approach to a resilient networking archi-
tecture overcomes attacks and compromises in the underlying
IP network infrastructure, the overlay itself is susceptible to
compromises. A complete intrusion-tolerant network solution
requires combining a resilient networking architecture with
an intrusion-tolerant overlay. The remaining challenge and a
major novelty of this work is the design and development of a
practical intrusion-tolerant overlay that meets the needs of the
targeted high-value applications.

We design and construct an intrusion-tolerant overlay that
can tolerate arbitrary (i.e. Byzantine [5]) attacker actions, based
on the key understanding that no overlay node should be trusted
or given preference. We use a Maximal Topology with Minimal
Weights, which specifies the overlay nodes, overlay links,
and minimal weight allowed on each link, to limit network
participation to authorized and authenticated overlay nodes
and to prevent routing attacks at the overlay level (e.g. black
hole [6] and wormhole [7]). We use source-based routing and
redundant dissemination methods to limit the effect that a
potentially compromised forwarder can have on the delivery of
messages. Specifically, we protect against K − 1 compromised
nodes anywhere in the network by sending along K node-
disjoint paths, or provide optimal delivery guarantees, where
messages are delivered as long as a correct path between source
and destination exists, by using constrained flooding on the
overlay topology. Finally, we prevent compromised nodes from
consuming a disproportionate share of resources by enforcing
fair network resource allocation at each overlay node.

As described so far, the intrusion-tolerant overlay provides



best-effort message forwarding in the presence of compromises.
However, high-value applications require messaging semantics
stronger than simple forwarding. For example, cloud monitoring
requires real-time delivery of a continuous stream of messages
to produce an up-to-date picture. Since some monitoring
messages convey more critical information than others, in the
event of network contention, it is crucial to continue delivering
the highest priority messages in real-time at the expense of
low priority ones. In contrast, cloud control messages contain
critical information that changes the state of the system and
must be delivered reliably to maintain consistency.

Inspired by these requirements, we define two intrusion-
tolerant messaging semantics: Priority Messaging with Source
Fairness provides prioritized timely delivery and Reliable
Messaging with Source-Destination Fairness provides reliable
delivery. Many applications are served well by one or the
other. We are currently investigating how to protect critical
infrastructure control systems for the power grid and find
that these semantics address several of the needs well. Some
applications may require more complex guarantees (e.g. military
command and control), which can be supported by creating
additional semantics.

We note that for our approach to be truly resilient in the
presence of successful compromises, it is crucial to complement
our techniques with overlay node diversity. If overlay nodes are
homogeneous, a single attack that compromises one overlay
node can simply be reused to take over the entire network.
We use software diversity to ensure that each overlay node
presents a different attack surface, and use proactive recovery
to periodically remove undetected compromises to allow the
network to remain correct and available over a long lifetime [8].

The intrusion-tolerant overlay is implemented and released
as open source as part of the Spines overlay messaging
toolkit [9]. We deploy the implementation on 12 data centers
of the LTN Global Communications cloud [10], spanning East
Asia, North America, and Europe. We evaluate the overlay
network in two ways. First, we send realistic traffic across the
overlay network to evaluate its performance in the presence of
compromised nodes. The overlay network ensures fairness and
continues to provide the guaranteed semantics in the presence
of compromised nodes. Second, we use the deployment as a
shadow monitoring system to carry the monitoring messages of
the global cloud, where it ran for several months and was used
in a limited production capacity. The deployment was able to
provide the same timely delivery of monitoring messages as the
production monitoring network, validating that the intrusion-
tolerant overlay can support high-value applications.

The contribution of this work is inventing the first practical
solution to intrusion-tolerant networking. Specifically:

• We describe the resilient networking architecture necessary
to support a practical intrusion-tolerant network service on
a global scale.

• We describe the principles underlying the design and
implementation of a practical intrusion-tolerant overlay:
– Maximal Topology with Minimal Weights locking down

the topology to prevent routing attacks.
– Redundant source-based dissemination scheme providing

a selectable trade-off between resilience and cost on
a message-by-message basis, from overcoming K − 1
intrusions anywhere in the network using K Node-Disjoint
Paths, to providing optimal resiliency through Constrained
Flooding on the overlay topology.

– Fair scheduling scheme regulating processing, memory
and bandwidth to protect against resource consumption
attacks.

• We invent and implement two intrusion-tolerant messaging
semantics: Priority Messaging with Source Fairness, which
provides strict timeliness guarantees, and Reliable Messaging
with Source-Destination Fairness, which provides strict
reliability guarantees.

• We deploy and evaluate the intrusion-tolerant overlay imple-
mentation on a global cloud spanning 12 data centers from
East Asia to North America to Europe, and present the results.
The implementation is publicly available at www.spines.org.

II. RELATED WORK

Prior work has investigated securing Internet routing pro-
tocols (surveyed by Papadimitratos et al. [11]), such as
integrating security into BGP [12], protecting OSPF with digital
signatures [13], and using Public Key Infrastructure and secret
keys to authenticate routing updates in generic networks [6].
These works provide security against external attacks, but do
not provide intrusion tolerance.

Several works created Byzantine gossip and peer-to-peer
(P2P) protocols to disseminate information. Fireflies [14]
provides an intrusion-tolerant gossip protocol to maintain full
membership information in the presence of Byzantine members,
which is used to support a distributed hash table. S-Fireflies [15]
makes Fireflies self-stabilizing, allowing it to resume operation
after recovering from transient faults that temporarily cause the
maximum-allowed ratio of Byzantine nodes to be exceeded.
Castro et al. [16] provide secure node ID assignment, secure
maintenance of routing tables, and secure message forwarding
for a structured P2P network, assuming no more than a fraction
of nodes are Byzantine. BAR Gossip [17] presents a P2P
application on top of a Byzantine gossip protocol that provides
predictable throughput and low latency for streaming media
with high probability. In general, gossip and P2P protocols
require a bound on the ratio of Byzantine faults, and provide
probabilistic message delivery, which is insufficient to support
strong deterministic guarantees. In addition, these works assume
the underlying network provides a clique of connectivity among
the protocol participants, an assumption that can be violated
by network compromises and attacks.

Other work has provided basic intrusion-tolerant messaging
in limited network environments. Probing and flow conser-
vation can be used to determine if routers are behaving
maliciously [18], [19]. However, these works place severe limits
on the location and number of compromises, and assume correct
routing behavior can always be determined. INSENS [20]
provides intrusion-tolerant routing in wireless sensor networks



by leveraging wireless-specific properties, e.g. compromised
nodes have a limited broadcast range.

The SCION work [21] provides a method to protect routing,
even in the presence of some compromised nodes. It does this
by allowing the source and destination to work together to
select a path. However, as the SCION work is a “clean-slate”
design, deploying it on the Internet is not feasible.

Previous work investigated routing messages in the presence
of Byzantine faults. LITON [22] protects overlay network
communication using on-demand node-disjoint routes and
HMACs. InTRO [23] extends LITON to include a voting
mechanism to replace nodes observed to be isolated, provided
that the required number of correct nodes are connected.
ODSBR [24] presents a source-based routing scheme that
localizes faults to a specific link using disguised probing
techniques and re-routes accordingly. Authenticated Adversarial
Routing (AAR) [25] successfully routes messages if even one
correct path exists between source and destination, however,
the limitation of only a single flow and the large initialization
overhead are barriers to practical deployment. These works
address Byzantine forwarders, but not Byzantine sources. In
addition, none of these works were deployed in practice
and they focus solely on message delivery, as opposed to
guaranteeing messaging semantics.

There is a misconception in the vast majority of Byzantine
fault tolerant networking papers that Byzantine faults are
limited to message forwarding, which may make it appear that
the problem we address has already been solved. For example,
in the work by Cristian et al. [26] there is a PKI setup among
nodes in the network and messages are signed and flooded.
Their naı̈ve diffusion technique has each node forward every
new message it receives to its neighbors. This technique is
flawed in a complete Byzantine fault model. In practice, nodes
(e.g., Byzantine sources) can inject many spurious messages
into the network. When naı̈ve diffusion techniques are used, a
Byzantine source can exhaust the bandwidth and processing of
correct nodes and links, causing high message loss and latency.
At the extreme, this kind of attack can prevent messages from
correct sources from propagating through the network.

In practice, effective solutions must operate correctly in the
complete Byzantine fault model. To the best of our knowledge,
prior to our work, only Radia Perlman’s visionary work truly
considered this complete model [27], [28].

Perlman’s work provides authenticated link-state routing in
the presence of Byzantine failures. It floods routing updates
with source-specific buffers to provide fairness and proposes
using node-disjoint paths for data. While Perlman bounds
the number of nodes in the network to address Sybil attacks,
we specify our Maximal Topology with Minimal Weights to
prevent both Sybil and routing attacks.

There are two fundamental differences between our work
and Perlman’s. First, Perlman only provides best-effort mes-
sage forwarding, as buffers operate under overtaken-by-event
semantics, with newer messages replacing older ones. In
contrast, we provide two semantics with specific timeliness
and reliability guarantees: Priority Messaging and Reliable

L
IT

O
N

O
D

SB
R

A
A

R

SC
IO

N

Pe
rl

m
an

O
ur

W
or

k

Feasibly (i.e. Internet) Deployable 3 3 3 3
Protect against link-level tampering 3 3 3 3 3 3
Protect against a single ISP meltdown 3 3
Protect against
sophisticated DDoS attack 3 3

Protect against BGP hijacking 3 3

Overcomes Byzantine Forwarders 3 3 3 3 3 3
Overcomes Byzantine Sources 3 3

Guarantees Semantics 3

TABLE I
COMPARISON OF RELATED WORK

Messaging. Priority Messaging provides strict timeliness for
each source’s highest priority messages, and it is as reliable
as possible, subject to timeliness and buffering constraints.
Reliable Messaging provides strict end-to-end reliability, and it
is as timely as possible within the strict reliability constraint.

Second, and more importantly, Perlman’s work is limited to
a single physical network. It requires changes to the IP protocol
to be usable for a single IP network, creating practical barriers
to deployment. We use an overlay approach, eliminating the
need to change the IP infrastructure. In addition, reliance on a
single network is fragile compared with our solution’s ability to
provide resiliency by leveraging multiple underlying networks.

The most relevant work is compared in Table I.
III. NETWORK AND THREAT MODEL

In this section we describe the network and threat model.
A. Network Model

The intrusion-tolerant network consists of intrusion-tolerant
messaging protocols running on top of a resilient networking
architecture, which uses an overlay network to leverage several
underlying IP networks such as commercial ISP backbones.

The overlay network consists of overlay nodes and logical
edges (i.e. overlay links), where each node can be a source
that injects new messages, a forwarder, and a destination. Each
overlay node has a set of neighbors, i.e. overlay nodes with
which it can communicate directly on the overlay without
intermediate overlay nodes.

Overlay network communication is authenticated using a
Public Key Infrastructure (PKI), where the system administrator
and each node in the overlay network has a public/private key
pair and knows all the other public keys. The overlay network
topology is known by all of the overlay nodes, and changes to
the topology can be made by the system administrator.
B. Threat Model

A correct node is an overlay node that executes the network
protocols faithfully. A compromised node is any overlay node
that is not correct. Compromised nodes can exhibit arbitrary
(Byzantine [5]) behavior. A compromised node has access to
all of the private cryptographic material stored at that node.
Compromises may be sophisticated and difficult to detect.
Rather than detecting and evicting compromised nodes, we
provide guarantees even in the presence of such compromises.

A correct edge is a logical edge between two overlay nodes
that is able to pass messages freely in both directions. A failed



edge is any logical edge that is not correct. Note that all
possible causes of edge failures, including (but not limited
to) underlying network link failures and congestion, injected
loss, misconfigurations, OSPF attacks, DDoS attacks, BGP
hijacking, and physical layer (router/switch) compromises, are
covered by this model.

A correct path is one consisting of only correct nodes and
correct edges.

Overlay node resources. A correct node has sufficient
computational resources to keep up with processing incoming
messages, but has bounded buffers for storing messages.

Attacker resources. Attackers can compromise overlay
nodes and any components of the underlying IP networks.
Attackers can have large amounts of network bandwidth,
memory, and computation, such as those required by so-
phisticated large-scale DDoS attacks (e.g. Coremelt [3] and
Crossfire [4]). However, we assume the attacker cannot break
the cryptographic mechanisms used by our protocols.

We do not assume a specific fractional bound on the number
of compromised nodes in the network. However, as a liveness
condition there must exist a correct path from source to
destination. If this liveness condition is not met, the system will
remain correct, but will not be live for that source-destination
pair (it may be live for other source-destination pairs).

IV. RESILIENT NETWORKING ARCHITECTURE

We use an overlay approach to build a resilient networking
architecture that leverages existing IP network infrastructure
while providing the resiliency and timeliness required for a
practical intrusion-tolerant network that the Internet cannot
natively provide.

A. Overlay Approach to Resilient Networking Architecture
The intrusion-tolerant network cannot be based on a single

underlying IP network because that IP network would be
susceptible to misconfigurations, attacks, and compromises
that could render the entire network unusable. Therefore, it is
necessary to use multiple IP networks, which in practice means
using the Internet. The Internet is designed to route around
problems, including those that affect an entire IP network.

However, Internet routing is based on trust (making it
susceptible to routing attacks such as BGP hijacking) and
is vulnerable to sophisticated DDoS attacks. For example, the
Coremelt [3] and Crossfire [4] DDoS attacks can decimate the
service of targeted traffic flows while completely preventing
Internet reroutes from taking place, forcing these flows to con-
tinuously experience poor service or complete disconnections.
Moreover, the tens of seconds to minutes of service interruption
during Internet reroutes caused by benign connectivity faults is
unacceptable for time-sensitive high-value applications such as
cloud and critical infrastructure monitoring; a mechanism that
provides faster (ideally near real-time) reroutes is required.

An alternative approach that uses the existing Internet infras-
tructure without being bound to Internet routing is to use an
overlay. Overlay networks can sit on top of multiple underlying
IP networks simultaneously and provide the ability to control
(and quickly change) the path of messages through the middle

of the network by sending them through intermediate overlay
nodes. As a result, overlays can overcome failures that render
entire underlying IP networks unusable and can overcome
Internet routing attacks (e.g. Coremelt and Crossfire) by quickly
rerouting messages on alternative paths rather than being
forced to use the chosen end-to-end Internet path [29], [30].
In addition, the overlay can implement dissemination schemes
that are not possible on the Internet, such as multiple node-
disjoint paths. We use resilient overlay topology construction,
diverse network providers, and multihoming to construct a
networking architecture that can survive anything short of a
complete simultaneous meltdown of multiple ISP backbones.
1) Resilient Overlay Topology Construction

To be resilient, the overlay network should contain redun-
dancy: a source and destination should be able to communicate
along multiple disjoint paths so that even if some paths fail,
other paths can still deliver messages. However, the overlay
must be constructed carefully to ensure that disjointness in the
redundant overlay topology matches actual physical disjointness
in the underlying network infrastructure. Otherwise, multiple
overlay links may overlap at the physical level, increasing the
risk that a single failure in the underlying network will affect
multiple overlay links.

We address this concern by placing overlay nodes in strategic
locations, i.e. well-provisioned data centers. ISPs invest strongly
in a relatively small number of strategic data center locations
by laying independent fiber connections between them. These
are ideal locations for overlay nodes, as the links between
different pairs of geographically-close data centers are likely
to be disjoint at the physical network level.

We can leverage the data center investment and the available
map of the backbones1 to design our overlay topology to
follow, more or less, the underlying network topology. We
create overlay links between overlay nodes that are directly
connected or only a few hops apart on the backbone. There
are relatively few underlying network routing options between
overlay nodes that are connected in this way, making it likely
that messages sent between the two overlay nodes will follow
the expected backbone path. This predictability allows the
overlay topology to be designed with high likelihood that no
overlay links overlap.

Note that overlay nodes are not connected as a clique. This
would result in overlay links that correspond to many-hop
connections on the backbone. The increased number of routing
options for many-hop connections makes the path messages
take less predictable, potentially leading to overlay links that
overlap at the physical level.
2) Use of Diverse Network Providers

To use multiple underlying IP networks, we can use an
approach similar to [31]. That work shows how to assign a
small number of diverse software variants to nodes to maximize
the expected client connectivity when each variant has some
probability of failing completely. By considering different ISPs

1Examples of such ISP backbone maps can be found by simply searching
the web for your favorite ISP and the phrase “fiber map.”



as the diverse variants, we can use these ideas to choose which
single ISP each overlay node should contract with to maximize
resilience to one or more ISPs suffering a complete meltdown.

3) Multihoming Using Diverse Network Providers
To further improve resilience, each overlay node can contract

simultaneous service from multiple ISPs via multihoming, as
shown in Figure 1. Using multihoming, an overlay link is
correct as long as at least one combination of the available
ISPs on each end of the link can pass messages. Normally,
combinations that use the same ISP at both ends are likely to
be more resilient, as they are not affected by BGP routing, but
any combination can be used.

Fig. 1. An overlay network using multihoming. Each color represents a
different ISP; a node with multiple colors simultaneously contracts service
with multiple ISPs. The white boxes represent randomly placed clients.

B. Attack Resilience
In the event of a BGP hijacking attack, traffic using Internet

routes that cross multiple ISPs can be diverted to an attacker-
specified destination, but traffic that stays within a single ISP is
not affected. Therefore, overlay links that contract service from
the same provider on both ends can still pass messages during
the attack. The overlay can route messages across different
ISPs without relying on BGP by switching between providers
inside the overlay nodes: a node can receive a message using
one provider and send it using a different provider.

(A)
Source Destination Internet 

Path 

(B)
Source Destination 

(C)
Source Destination 

Fig. 2. An illustration of a Crossfire-style DDoS attack. By switching between
(B) and (C) above, the attacker can cut off communication between source and
destination, while simultaneously ensuring that the path will not be rerouted
because no one link is unusable for long.

The Crossfire [4] and Coremelt [3] DDoS attacks can force
a targeted traffic flow or a targeted area to experience severely
degraded quality of service or complete disconnection by
overwhelming specific links on the Internet path used by the
targeted flow or paths leaving or entering the targeted area.
Normally, OSPF or BGP will eventually detect the problem on
the link and route around it. However, the attack on the flow
or area is made persistent by switching between different links
on the same path: no one link is attacked for long enough to
be detected, but the path as a whole is always unusable. This
is illustrated in Figure 2.

In overlay networks, the Crossfire and Coremelt attacks
can be used to attack the Internet paths corresponding to the
overlay links connecting overlay nodes. However, our resilient
networking architecture makes it very difficult for an attacker
to cut off communication between a source and a destination. A
successful attack must simultaneously affect multiple overlay
links (enough to cut the overlay topology between source
and destination), attacking each such overlay link on multiple
ISPs (enough to cut any combination of ISPs available on that
overlay link). This significantly raises the bar for the attacker.

V. INTRUSION-TOLERANT OVERLAY NETWORK

A resilient networking architecture based on an overlay
approach tolerates compromises and attacks in the underlying
IP network infrastructure, but the overlay itself must also
be resilient to compromises. We build an intrusion-tolerant
overlay network using a Maximal Topology with Minimal
Weights, redundant source-based dissemination methods, and
intrusion-tolerant messaging protocols that guarantee well-
defined semantics. Our implementation combines the dis-
semination methods and messaging protocols into a single
infrastructure. Applications can select both a dissemination
method and a protocol to use on a message-by-message basis.
A. Maximal Topology with Minimal Weights

Each overlay node trusts an offline system administrator to
initially distribute a signed Maximal Topology with Minimal
Weights (MTMW). The MTMW specifies the overlay nodes and
links in the network and the minimal weight allowed on each
link. Weights can represent any real-world cost (e.g. latency)
and routing decisions minimize weight. Overlay nodes only
accept messages from their direct neighbors in the MTMW;
non-neighbors communicate through intermediate nodes.

Overlay nodes monitor the links with their neighbors, raise
and lower link weights when problems arise and resolve
respectively, and disseminate signed routing updates.2 A node
is not allowed to change the weights of non-neighboring links
or decrease the weight of any link below its minimal allowed
weight. If a node attempts such an action, it is detected, that
node is considered compromised, and that update is ignored. As
a result, routing attacks (e.g. black hole [6] and wormhole [7])
are prevented, because routing updates which would otherwise
have disproportionately attracted traffic towards the node that
issued the update are disallowed and ignored.

2We use rate-limiting and overtaken-by-event techniques to limit the impact
of spurious routing updates from compromised nodes.



Since the overlay network topology is carefully constructed,
with overlay nodes placed in strategic data centers (Sec-
tion IV-A1), the topology (and thus the MTMW) does not
change frequently.3 However, in the event that a change is
needed, the offline system administrator can update, sign,
and re-distribute the MTMW. Each MTMW is assigned a
unique monotonically increasing sequence number to defeat
replay attacks. If desired, the offline system administrator can
be converted to an online Certificate Authority. However, in
this case the integrity of the system relies on the Certificate
Authority not being compromised.
B. Redundant Source-based Dissemination Methods

We use redundant source-based dissemination methods to
limit the effect that a potentially compromised forwarder can
have on message delivery. We use K Node-Disjoint Paths and
Constrained Flooding because they provide a good spectrum
of cost-resiliency tradeoffs.
1) K Node-Disjoint Paths

In the K Node-Disjoint Paths dissemination method, each
message is sent across the network K times, via K distinct
paths, such that no two paths share any overlay nodes, other
than the source and destination [32], [33]. The K separate
paths are specified on the message at the source.

Guarantees. K Node-Disjoint Paths tolerates K − 1 com-
promised nodes anywhere in the network and any number of
failed edges, as long as there exist K node-disjoint paths from
source to destination after the failed edges are removed.
2) Constrained Flooding

In Constrained Flooding, in the worst case, each message is
sent on every overlay link in the overlay network topology (not
the entire underlying network). In practice, acknowledgments
from the destination and feedback from neighboring overlay
nodes prevent the message from being sent to nodes that are
already known to have received it, reducing overhead.

Guarantees. Constrained Flooding tolerates any number of
compromised nodes and failed edges, as long as there exists
a correct path from source to destination. This guarantee is
optimal: if a correct path does not exist, a combination of
compromised nodes and failed edges have cut the network and
no dissemination method can succeed.
C. Intrusion-Tolerant Messaging Semantics

We present two specific intrusion-tolerant messaging seman-
tics: one that provides prioritized timely delivery, and one that
provides reliable delivery. These semantics ensure fairness and
guarantee performance to the applications using them, even in
the presence of compromised nodes.
1) Priority Messaging with Source Fairness

Priority Messaging with Source Fairness (Priority Messaging)
is motivated by the real-time demands of monitoring systems.
Priority Messaging ensures that each source’s highest priority
messages are always timely. Within timeliness and buffering
constraints, Priority Messaging is as reliable as possible.

3While the overlay topology is relatively stable, clients can connect from
anywhere at any time.

Because compromises may be impossible to detect, no source
can be given preference over another. Resources must be
allocated fairly across sources, and message priority must
be considered independently for each source. If we compared
priorities across sources, a compromised source could send
all of its messages with highest priority, potentially starving
correct sources.

Protocol description. Each message is assigned a priority,
expiration time, and monotonically increasing sequence number
by its source, and it is digitally signed. Each node stores
uniquely received messages, maintaining responsibility for each
message until it expires or it is sent, received, or dropped (to
make space for higher priority messages) on each of the node’s
outgoing neighboring links, specified by the dissemination
method of the message.

Since Priority Messaging does not provide ordered delivery,
we cannot rely on a single sequence number for each source
to detect duplicates and defeat replay attacks. Each node must
store the metadata (i.e. source and sequence number, but not the
message content) of each unique received message until that
message expires. To limit storage required for metadata, we
can enforce an upper bound on the lifetime of each message.4

The fair scheduling scheme for Priority Messaging deter-
mines how messages are stored and forwarded. Upon receiving
a new message, a node tries to add the message to each outgoing
link’s storage queue. If the message storage queue for a given
outgoing link is full, the oldest lowest-priority message from
the source currently using the most storage on that link is
dropped. This may either make room for the new message or
result in the new message being dropped.

When sending messages on a given link, each active source
is treated in a round-robin manner by selecting the source at
the front of the link’s sending queue. If that source has no
message to send, it is removed from the queue, ensuring that
only active sources are considered. Newly active sources are
added to the end of the queue. Once a source is selected, the
oldest highest-priority message from that source is sent.

The Priority Messaging scheduling scheme ensures fair
processing, memory and bandwidth allocation, preventing
resource consumption attacks in the presence of compromised
sources. The scheme enables full utilization of available
memory and bandwidth by dynamically allocating resources
based on the number of active sources.

Service guarantees. Due to lack of space, we informally
describe the guarantees and state two key theorems from [35]
for the Constrained Flooding variant of Priority Messaging.
Note that the guarantees are similar for K Node-Disjoint Paths:
where the Constrained Flooding theorems refer to a correct
path anywhere in the network, K Node-Disjoint Paths theorems
refer to a correct path in the set of K computed paths.

The complete formal specifications and proofs of Priority
Messaging guarantees, for both K Node-Disjoint Paths and
Constrained Flooding, can be found in [35].

4This requires monotonically increasing clocks and some level of network
synchronicity. Previous work has met these conditions with atomic clocks [34].



Priority Messaging delivers messages in a timely (near
real-time) manner. In the absence of network contention, all
messages are timely. In the presence of network contention,
Priority Messaging maintains real-time delivery of the higher
priority messages by potentially dropping some of the lower
priority messages or delivering them with higher latency.

Theorem - Priority Flooding Timely-Safe. Consider a net-
work of n nodes. If the network has no highest-priority message
from a correct source S, then if S introduces a single highest-
priority message m to a correct destination D, D will receive
m within some time t. t is no greater than the minimum
message transmission time along a correct path between S
and D, including the time it takes for at most n-1 messages
to be sent at each correct node along that path. Note that t is
infinity if there is no correct path from S to D.

Priority Messaging guarantees fair storage and bandwidth
allocation for each source on each outgoing link between
two correct nodes; each active source receives either the
resources (storage and bandwidth) it requests or its fair share(

total resources
#active sources

)
, whichever is smaller. If a source is using

less than its fair share, the unused resources are evenly
reapportioned among the other active sources that are requesting
more than their fair share. Note that even if a correct node
receives messages in an unfair way from a compromised
neighbor, fairness is still maintained on the correct node’s
outgoing links.

Theorem - Priority Flooding Guaranteed Throughput.
Consider a network of n nodes. If there exists a correct path
from a correct source S to a correct destination D, and S
sends only to D, and S is one of g correct sources actively
sending, and there are f compromised sources actively sending,
then the rate at which S can send to D is no less than 1

f+g
times the minimum bandwidth over all edges in that correct
path. In the worst case, this rate is 1

n .

2) Reliable Messaging with Source-Destination Fairness
Reliable Messaging with Source-Destination Fairness (Re-

liable Messaging) is motivated by the reliability demands of
control messages. Reliable Messaging ensures that messages
sent between a source and destination are delivered end-to-
end reliably and in order. Within these reliability constraints,
Reliable Messaging is as timely as possible.

Because messages must be kept until they are acknowledged
by the destination, we cannot use source-based fairness and
dynamic storage allocation (as in Priority Messaging). Using
those approaches, a compromised destination could refuse
to acknowledge messages to block sources from sending to
other correct destinations. Therefore, Reliable Messaging must
enforce fairness based on source-destination flows and must
statically allocate storage across all potential flows, where a
flow consists of all traffic between a source and a destination.

Protocol description. Each message is assigned a consecu-
tive sequence number and is digitally signed. Nodes accept and
store messages with the next expected sequence number for
each flow. Duplicates are easily recognized and discarded,

defeating replay attacks. To provide end-to-end reliability,
intermediate nodes maintain responsibility for messages until
they are acknowledged by the destination.

The fair scheduling scheme for Reliable Messaging deter-
mines how messages are stored and forwarded. Upon receiving
a new message for a given flow, a node adds the message to
that flow’s storage. When storage for a particular flow fills,
the node stops accepting new messages for that flow, creating
back-pressure (all the way back to the source) that prevents
new messages from entering the network for that flow.

When sending messages on a given link, each active flow is
treated in a round-robin manner using the link sending queue,
as described in the Priority Messaging scheduling scheme. Note
that the Reliable Messaging link sending queue contains active
flows (rather than active sources). Once a flow is selected, the
next in-order message for that flow is sent.

As in Priority Messaging, the Reliable Messaging scheduling
scheme ensures fair processing, memory and bandwidth alloca-
tion, preventing resource consumption attacks in the presence
of compromised sources. Although storage must be statically
allocated, the scheme enables full bandwidth utilization via
dynamic allocation of bandwidth for active flows.

Destinations acknowledge messages using end-to-end (E2E)
ACKs. E2E ACKs are periodically generated (with a config-
urable E2E timeout), signed, and flooded back through the
network by each destination. Each E2E ACK indicates the
highest in-order sequence number received from every source
node in the network. E2E ACKs allow intermediate nodes
to discard acknowledged messages, making room for new
ones and clearing back-pressure. These ACKs operate on
an overtaken-by-event basis, with intermediate nodes only
storing the latest one from each destination. To prevent
compromised nodes from spamming E2E ACKs to consume
network bandwidth, a correct node only forwards E2E ACKs
that indicate progress, and forwards them no more often than
the E2E timeout. The choice of E2E timeout presents a trade-off
between overhead and responsiveness; longer timeouts preserve
more bandwidth for data messages, but make the network take
longer to clear back-pressure. As an optimization, nodes can
also send neighbor ACKs that indicate which messages they
have received, to prevent neighbors from sending unneeded
messages, improving bandwidth usage.

Reliable Messaging provides reliability even when inter-
mediate nodes crash and recover. Once a recovering node
retrieves the latest E2E ACKs from a correct neighbor, it can
resume correctly forwarding data messages. This ensures that
messages will flow even when the only correct path from
source to destination is an eventual path.

Service guarantees. Due to lack of space, we informally
describe the guarantees and state two key theorems from [35]
for the Constrained Flooding variant of Reliable Messaging.
Note that the guarantees are similar for K Node-Disjoint Paths:
where the Constrained Flooding theorems refer to a correct
path anywhere in the network, K Node-Disjoint Paths theorems
refer to a correct path in the set of K computed paths.

The complete formal specifications and proofs of Reliable



Messaging guarantees, for both K Node-Disjoint Paths and
Constrained Flooding, can be found in [35].

Reliable Messaging delivers messages end-to-end reliably
and in order for each source-destination flow, even if there is
only an eventual path between source and destination.

Theorem - Reliable Flooding Safety. If a correct source node
S accepts i messages destined to some correct destination node
D, then the first i−b messages have all been reliably delivered
in order at D, where b is the size of the buffer for one flow at
a node.

Reliable Messaging guarantees fair storage and bandwidth
allocation for each flow on each outgoing link between two
correct nodes. Each active flow receives either the bandwidth it
requests or its dynamic fair share

(
total bandwidth
#active flows

)
, whichever

is smaller. For storage, each active flow receives its static fair
share

(
total storage
#total flows

)
. Note that, as with Priority Messaging,

compromised neighbors cannot affect the fairness of a correct
node’s other correct outgoing links.

Theorem - Reliable Flooding Guaranteed Throughput.
Consider a network of n nodes. If there exists a correct path
from a correct source S to a correct destination D, and S
is one of g correct sources actively sending, and there are f
compromised sources actively sending, then the rate at which S
can send to D is no less than 1

(f+g)∗(n−1) times the minimum
bandwidth over all the edges in that correct path. In the worst
case, this rate is 1

n∗(n−1) .

D. Implementation Considerations
Diversifying overlay node attack surface. To greatly

reduce the chance that a single compromise takes down multiple
overlay nodes simultaneously, we diversify the attack surface
of the overlay nodes using compiler-based diversity [36] and
proactive recovery [37], [8]. Proactive recovery periodically
takes down each overlay node and restores it from a known
clean state, removing potentially undetected compromises.
Compiler-based diversity generates new software variants on
demand by making use of randomized no-operation insertion,
stack padding, shuffling the stack frames, and other techniques
to obfuscate the code layout. This allows each overlay node to
present a different attack surface compared with the other
overlay nodes. Moreover, each time an overlay node is
proactively recovered, it is instantiated with a new software
variant that has likely never been used before.

Protocol selection in unified infrastructure. The imple-
mentation allows the different dissemination methods (K-
Paths and Constrained Flooding) and the messaging protocols
(Priority and Reliable Messaging) to coexist in a single infras-
tructure. Applications can select a combination of dissemination
method and messaging protocol on a message-by-message
basis. Currently, there are four combinations: Priority K-Paths,
Priority Flooding, Reliable K-Paths, and Reliable Flooding.
Note that all combinations can be in use simultaneously.

Proof-of-Receipt Link. Neighboring overlay nodes commu-
nicate using a Proof-of-Receipt (PoR) link that provides reliable
in-order communication. The link can also provide TCP fair-

10 

6 11 

5 

2 

8 

7 
4 

3 

1 

9 

12 

Fig. 3. Global cloud topology spanning East Asia, North America, and Europe.
Each circle represents an overlay node hosted in a data center.

ness, if desired. The link maintains cryptographic authentication
and integrity (similar to DTLS [38]), using an authenticated
Diffie-Hellman [39] key exchange to establish a shared secret
key. This secret key is used to compute HMACs [40] (using
SHA-256 [41]) to provide link-level message integrity. Each
side of the link must acknowledge messages with a proof-
of-receipt, using a cumulative nonce method [42], to defeat
denial-of-service attacks that acknowledge unreceived messages
to drive the sender arbitrarily fast.

Cryptographic mechanisms. Each message is signed at
the source overlay node using RSA [43] digital signatures and
verified at each forwarder or destination node. We choose
RSA signatures rather than a vector of HMACs because
signatures provide non-repudiation and scale well with the
number of nodes in the network. Moreover, a vector of HMACs
is susceptible to certain resource consumption attacks. For
example, a compromised forwarder can tamper with the HMAC
for the destination on messages between a correct source and
that destination in a way that cannot be detected by intermediate
nodes, causing these invalid messages to consume resources at
the expense of the correct source’s valid messages.

We use the OpenSSL library [44] for the RSA imple-
mentation, as well as for the Diffie-Hellman and HMAC
implementations used by the Proof-of-Receipt link.

VI. DEPLOYMENT AND EVALUATION

We deploy the intrusion-tolerant overlay implementation on
12 data centers of the LTN Global Communications cloud [10]
(Figure 3), spanning East Asia, North America, and Europe. We
do not report the specific latency on each edge for proprietary
considerations. This topology contains sufficient redundancy
to support at least three node-disjoint paths between any two
nodes. We were authorized to use 500 Mbps continuously for
a whole year. To ensure that we did not exceed the budget,
we set the bandwidth capacity of each of the 32 links in the
topology to be 10 Mbps.

We evaluate the overlay deployment’s performance and over-
head (Section VI-A) and resilience to attacks (Section VI-B)
by sending realistic traffic similar to monitoring and control
traffic patterns observed in the cloud, with most messages
below 3500 bytes. We evaluate both Priority Messaging, which
provides the necessary semantics for monitoring traffic, and
Reliable Messaging, which provides the necessary semantics
for control traffic. In addition, we use the deployment as a
shadow monitoring system to carry the monitoring messages



Priority (Mbps) Reliable (Mbps)
Flood K=1 K=2 Flood K=1 K=2

(a) 125 480 425 125 395 395
(b) 45 85 80 40 85 80

TABLE II
MAXIMUM GOODPUT MEASURED WITH:

(A) NO CRYPTOGRAPHY, (B) HMACS AND SIGNATURES.
Dissemination Avg. # Scaled Avg. Path

Method Hops Cost Lat. (ms)
K=1 1.9 1.0 41.4
K=2 4.4 2.3 43.5
K=3 6.6 3.5 46.6

Naı̈ve Flooding 64.0 34.1 -
Engineered Flooding 32.0 17.0 -

TABLE III
ANALYTICAL COST OF SOURCE-BASED DISSEMINATION ON THE TOPOLOGY.

SCALED COST IS AVG. # HOPS NORMALIZED BY COST OF K=1.

Protocol Avg. # Hops Scaled Cost
Priority Flooding 35.8 19.0

Reliable Flooding (w/o 31.3 16.7
End-to-End ACKs)
Reliable Flooding 16.3 8.7

TABLE IV
MEASURED COST ON THE TOPOLOGY. SCALED COST IS AVG. # HOPS

NORMALIZED BY COST OF K=1.

of the cloud (Section VI-C). Note that all experimental results
are obtained by running on the actual global network, except
Table II and Figure 8, which are instead measured in a
controlled laboratory environment.

A. Performance and Overhead
We evaluate the performance and overhead of the intrusion-

tolerant overlay in benign environments.
Cryptographic impact on performance. Table II shows

the maximum performance for one active flow in the network,
obtained in a controlled laboratory environment matching
the topology of Figure 3. In (a), cryptographic mechanisms
are disabled. In (b), they are enabled. Since performance is
strictly CPU bound when using cryptography, adding additional
hardware by sharding the incoming traffic across multiple
cores or even multiple machines would enable us to reach
performance comparable with (a) in Table II.

Communication cost. The communication cost of the
intrusion-tolerant protocols is topology-dependent. Tables III
and IV show the analytical and experimental cost of source-
based dissemination methods and messaging semantics on the
cloud topology. The cost of sending a message corresponds to
the number of edges the message traverses. Note that our
baseline case is secure single-path routing in the resilient
overlay network, which corresponds to K-Paths with K=1.

Analytical comparison: In Table III, we report the average
cost over all source-destination pairs for each dissemination
method. For the baseline case of K-Paths with K=1, equivalent
to secure single-path routing, the average number of hops
between two nodes is 1.9 and the average path latency is
41.4 ms. For K=2, the total number of hops across the paths
is 4.4, which is more than double (2.3x) the K=1 baseline.
For K=3, the total number of hops across the paths is 6.6,
which is more than triple (3.5x) the K=1 baseline. For both
K=2 and K=3, since multiple shortest (latency-wise) paths
do not exist, the average latency across the paths increases.

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

35	
  

40	
  

0	
   100	
   200	
   300	
   0	
   50	
   100	
   150	
   0	
   100	
   200	
  

G
oo

dp
ut
	
  (M

bp
s)
	
  

Time	
  (Seconds)	
  
(a)	
   (b)	
   (c)	
   (d)	
  

Aggregate Goodput 

0	
   50	
   100	
  

Fig. 4. Experimental goodput for: (a) Naı̈ve Flooding, (b) Priority Flooding,
(c) Reliable Flooding (no E2E ACKs), and (d) Reliable Flooding.

Since the cost of Constrained Flooding depends on network
message timing and acknowledgments (in Reliable Messaging),
we cannot calculate its analytical cost. Instead, we show the
analytical cost of Naı̈ve Flooding, where messages traverse
each edge in both directions, and Engineered Flooding, where
techniques (such as random delay) are used so that messages
traverse each edge only once. Since flooding schemes are not
path-based, average path latency is not reported. Note that
since flooding explores all paths, the latency will be no more
than the path latency of the shortest correct path.

Experimental comparison: We measure and compare the
costs of Priority Flooding, Reliable Flooding without E2E
ACKs, and Reliable Flooding (Table IV). The experiments
use five randomly selected flows (9-11, 4-5, 7-9, 1-10, and
3-8 in Figure 3) each sending at the maximum link capacity
(10 Mbps) to create network contention. Since the experimental
costs for K-Paths are very similar to their analytical costs, they
are omitted. Note that Reliable Flooding without E2E ACKs
is not a correct protocol. It is solely used to evaluate the cost
benefits of neighbor ACKs.

The cost of Priority Flooding is between the costs of Naı̈ve
Flooding and Engineered Flooding because messages traverse
some (but not all) edges in only one direction. Since timeliness
is vital for Priority Messaging, a random delay is infeasible and
only the natural latency of the network can prevent messages
from flowing twice on a given edge. Note that the Priority
Flooding cost includes messages that traverse part of the
network but do not arrive at the destination due to contention.

In Reliable Flooding, neighbor ACKs eliminate the need to
forward messages to neighbors that have already acknowledged
them. E2E ACKS eliminate the need to forward messages that
have already been acknowledged by the destination. Both types
of ACKs can prevent messages from traversing every edge;
with E2E ACKs, messages may not even need to reach every
node in the network. The cost of Reliable Flooding without
E2E ACKs is comparable to the cost of Engineered Flooding,
showing the benefits of neighbor coordination. The cost of
Reliable Flooding is significantly lower; the E2E ACKs provide
global knowledge to nodes, giving the power of flooding for a
much cheaper cost.



Aggregate goodput. Figure 4 shows the goodput for Naı̈ve
Flooding, Priority Flooding, Reliable Flooding without E2E
ACKs, and Reliable Flooding. In Naı̈ve Flooding (Figure 4a),
since each message travels on every edge in both directions,
each of the five flows gets one fifth of the bandwidth capacity.
Priority Flooding (Figure 4b) and Reliable Flooding without
E2E ACKs (Figure 4c) both have higher goodput than Naı̈ve
Flooding because they avoid sending messages on some links.
Priority Flooding has higher goodput than Reliable Flooding
without E2E Acks. Because Priority Flooding drops messages
due to contention and different messages are dropped on
different paths, not all messages reach all nodes, providing
opportunities for more messages to arrive at the destination
in aggregate. Reliable Flooding (Figure 4d) has the highest
goodput because the E2E ACKs prevent some messages from
being sent to regions of the network that do not need them.

Discussion. The cost of Reliable Flooding (Table IV) is
about 2.5x the cost of K=3 (Table III), making it an appealing
alternative. Initially, we expected that Priority Flooding would
cost less and perform better than Reliable Flooding, since it is
a best-effort protocol and less rigid. However, the E2E ACKs
result in higher aggregate goodput as well as higher goodput
for each individual flow. While Reliable Flooding achieves
higher goodput, Priority Flooding is still the best choice for
applications that require timeliness.

In this global cloud, the monitoring and control traffic
amounts to less than 0.1% of the overall traffic. Because the
messaging overhead of our protocols on that topology is 2.3x
for K Node-Disjoint Paths with K=2 (Table III) and up to
19x for Constrained Flooding (Table IV), the overhead cost of
intrusion-tolerant monitoring and control is below 2% of the
total traffic. We consider this a tolerable overhead cost because
these applications form the infrastructure of the cloud.

B. Resilience to Attacks

We evaluate the correctness of the implementation and the
performance of the deployment under instrumented attacks. The
majority of reported experiments use Constrained Flooding
because, in terms of contention, it presents a more demanding
scenario than K-Paths.

1) Correctness under Malicious Attacks

To verify that our implementation is correct in the presence
of Byzantine (arbitrary) attacks, we validated it using the Turret
platform [45], designed for automatically finding attacks in
distributed system implementations.

Turret enables a system to be run with several attacker-
controlled nodes. The compromised nodes launch attacks to
attempt to subvert the system. Such actions include, but are
not limited to, dropping, delaying, replaying, diverting, and
reordering messages. In addition, compromised nodes can
maliciously craft messages, as they have full knowledge of the
protocol. For example, fields of a target message may be set to
zero, their minimum or maximum values, or a random value.
Turret can be configured to run for an extended period of time
(e.g. days or weeks), continuously trying different attacks.

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

0	
   100	
   200	
   300	
   400	
   500	
   600	
  

G
oo

dp
ut
	
  (M

bp
s)
	
  

Time	
  (Seconds)	
  

guaranteed fair share 

measured goodput 

Fig. 5. Performance of one Priority Flooding flow (thin line) with an increasing
number of active sources. The thick line shows the guaranteed fair share.

(a)	
   (b)	
  

0	
  

20	
  

40	
  

60	
  

80	
  

100	
  

120	
  

140	
  

160	
  

180	
  

200	
  

0	
   20	
   40	
   60	
   80	
  

G
oo

dp
ut
	
  (M

bp
s)
	
  

Time	
  (Seconds)	
  Time	
  (Seconds)	
  

La
te
nc
y	
  
(M

ill
is
ec
on

ds
)	
  

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

0	
   20	
   40	
   60	
   80	
   100	
  

correct flow 

correct flow 

Fig. 6. Priority Flooding (a) goodput and (b) latency.

We tested our implementation using Turret and discovered
several bugs in message validation. For example, a compro-
mised node could cause a correct node to crash by sending an
ACK for the maximum sequence number. To date, we have
fixed all discovered vulnerabilities, and further iterations of
Turret have not revealed new issues.

2) Priority Messaging under Performance Attacks
Figure 5 shows the performance of a single Priority Flooding

flow sending at the maximum link capacity. Every 60 seconds,
an additional randomly selected source node begins sending at
the same capacity. At each interval, we report the measured
performance (thin line) and the guaranteed fair share (thick
line) based on the number of active sources. The measured
goodput outperforms the minimum guaranteed value because
not all links are in full contention at all times.

Figure 6a shows the goodput for a correct Priority Flooding
flow (9-11) sending at 1.6 Mbps, with four compromised flows
trying to consume bandwidth by each sending at the maximum
link capacity (10 Mbps). The goodput of the correct flow is not
affected because 1.6 Mbps is less than its fair share with four
other active flows. The remaining bandwidth is shared evenly
among the other flows. These results are consistent with the
service guarantees of Priority Messaging.

Figure 6b shows the latency experienced by these five flows
and compares it to the propagation delay between the source
and destination (flat line). While all five flows experience
latency close to propagation delay, the correct flow’s latency is
closer to propagation delay because it sends less than its fair
share, so its messages do not wait in queues.

In Figure 7, a correct Priority Flooding flow (7-9), from
Europe to East Asia, sends at a rate of 7 Mbps and evenly
distributes its messages across ten priority levels (ten colored



0	
  

50	
  

100	
  

150	
  

200	
  

250	
  

300	
  

350	
  

400	
  

0	
   14	
   29	
   43	
   58	
   72	
   86	
  

M
es
sa
ge
	
  C
ou

nt
	
  

Time	
  (Seconds)	
  

One 
compromised 

source 

Two 
compromised 

sources 

Fig. 7. Priority Flooding under message spamming attack. When compromised
nodes attempt to saturate the network with highest-priority messages, the correct
node’s higher priority messages (lower bands) are preserved.

0	
  

1	
  

2	
  

3	
  

4	
  

5	
  

6	
  

7	
  

8	
  

9	
  

10	
  

0	
   1	
   2	
   5	
   10	
   25	
   50	
  

G
oo

dp
ut
	
  (M

bp
s)
	
  

Loss	
  Rate	
  on	
  All	
  Links	
  (%)	
  

Constrained	
  Flooding	
   K-­‐Paths	
  

Fig. 8. Performance of one Reliable Messaging flow with loss rates applied
to all links in the topology.

bands). With no attack, all messages are received at the
destination. When one or more compromised nodes attempt to
saturate the network with highest-priority messages, the correct
node’s higher priority messages are preserved at the expense
of its lower priority messages. After the attack stops, the lower
priority messages still in storage at intermediate nodes are
forwarded, resulting in a burst of traffic. As can be seen in the
graph, this storage is cleared in order by priority (i.e. an entire
priority level is cleared before starting the next lower level).
In all cases, the correct flow achieves the bandwidth it requests
or at least its fair share, meeting the service guarantees.

3) Reliable Messaging under Performance Attacks
Figure 8 shows the performance of a single Reliable

Messaging flow (7-9), from Europe to East Asia, for both
Constrained Flooding and K-Paths, with various loss rates
applied to all links in the network. This experiment is emulated
to match the topology and latencies of the real cloud to
accurately control the injected loss. The flow is able to maintain
performance, even under high loss. This is the worst-case flow
for loss in the topology because it uses the most hops, and loss
is applied on each hop. In fact, this is one of the worst-case
flows on the globe for backbone traffic as it spans about half
of the earth’s circumference.

Figure 9 shows the performance of a single Reliable Flooding
flow sending at maximum link capacity over the course of
two events: two compromised flows attempting to saturate
the network, and a crash-recovery of intermediate nodes that

0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  
10	
  

0	
   50	
   100	
   150	
   200	
   250	
   300	
  

G
oo

dp
ut
	
  (M

bp
s)
	
  

Time	
  (Seconds)	
  

Two compromised flows 

Network 
is cut by 

failures 
network 

recovers, 

the 
benign 

One failure 

reconnecting 

Fig. 9. Performance of one Reliable Flooding flow (thin line), impacted by
two compromised flows and by crashes that cut the network.

causes a network partition between source and destination. The
guaranteed fair share (thick line) is shown for reference in all
cases. Throughout the experiment, the flow’s goodput meets
the service guarantees. During contention, the E2E ACKs result
in goodput higher than the guarantee.
C. Shadow Monitoring System

We use the deployment to carry the monitoring messages of
the global cloud. The monitoring messages provide a real-time
view of the cloud, updating every 1–3 seconds depending on
the type of information. This view contains detailed information
regarding the status of data centers, the network characteristics
(e.g. latency, bandwidth, loss rate) of links between data centers,
the status of cloud access points (i.e. clients), and the service
characteristics that each client-generated task receives.

The deployment ran for several months as a complete shadow
monitoring system for all monitoring messages. It was used in a
limited production capacity: monitoring messages carried by the
shadow network were processed and displayed in a graphical
user interface that shows a real-time view of the cloud. Other
alarm and log related features were not implemented. The
messages used Priority Messaging as it provides the necessary
semantics for monitoring. We alternated between using K-
Paths (with K=2) and Constrained Flooding to validate both
dissemination methods in a real deployment.

The shadow network provided the same timely delivery of
monitoring messages as the production monitoring network
(resulting in an equivalent real-time view of the cloud), but
with the addition of intrusion-tolerant guarantees for a tunable
higher cost. In certain cases, the shadow system was even
more timely (about 2–5 ms) on some of the longer paths in
the network because messages arrive first on a lower latency
path compared with the path chosen by the normal monitoring
system, which has other routing considerations. Based on our
experience building and running this cloud, we find the higher
cost, even for Constrained Flooding, an acceptable price to pay
for the critical messages, given the strong guarantees gained.
Further, we are even considering using K-Paths to carry data
for select high-value applications.

VII. CONCLUSION

We presented the first practical intrusion-tolerant network
service. While the solution is expensive and not suitable for
every application, it provides a complete and practical solution
for high-value applications that previous work, including our
own past efforts, has failed to offer. The solution uses an
overlay approach to overcome malicious attacks and com-



promises in both the underlying network infrastructure and
in the overlay itself. We deployed the overlay on a global
cloud spanning East Asia, North America, and Europe, and
evaluated its performance carrying realistic cloud monitoring
and control traffic in the presence of compromised nodes. The
implementation is publicly available in the Spines messaging
toolkit at www.spines.org.

VIII. ACKNOWLEDGEMENT

We thank Jacob Green, John Lane, Michal Miskin-Amir, Nilo
Rivera and Jonathan Stanton for valuable discussions and for
their help in deploying the intrusion-tolerant overlay network on
the LTN cloud. We thank Wyatt Lloyd for important feedback
on an earlier version of this work. We thank the anonymous
reviewers and the Program Vice Chair, Fernando Pedone, for
useful comments that helped improve the paper. This work
was supported in part by DARPA grant N660001-1-2-4014. Its
contents are solely the responsibility of the authors and do not
represent the official view of DARPA or the Department of
Defense.

REFERENCES

[1] A. Toonk, “Chinese ISP hijacks the Internet,” bgpmon.net/blog/?p=282,
2010, access: 2015-12-15.

[2] “YouTube hijacking: A RIPE NCC RIS case study,”
www.ripe.net/internet-coordination/news/industry-developments/
youtube-hijacking-a-ripe-ncc-ris-case-study, 2008, access: 2015-12-15.

[3] A. Studer and A. Perrig, “The coremelt attack,” in 14th European Symp.
Research in Comput. Security (ESORICS), 2009, pp. 37–52.

[4] M. S. Kang, S. B. Lee, and V. Gligor, “The crossfire attack,” in IEEE
Symp. Security and Privacy (SP), May 2013, pp. 127–141.

[5] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–401, Jul. 1982.

[6] G. Finn, “Reducing the vulnerability of dynamic computer networks,”
USC/Information Sciences Inst., Tech. Rep. ISI-RR-88-201, June 1988.

[7] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet leashes: a defense
against wormhole attacks in wireless networks,” in 22nd Annu. Joint
Conf. IEEE Comput. and Commun. Soc. (INFOCOM), vol. 3. IEEE,
2003, pp. 1976–1986.

[8] M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir, “Towards
a practical survivable intrusion tolerant replication system,” in Proc. IEEE
Int. Symp. Reliable Distributed Syst. (SRDS), 2014, pp. 242–252.

[9] “The Spines Messaging System,” www.spines.org, access: 2015-12-15.
[10] “LTN Global Communications,” www.ltnglobal.com, access: 2015-12-15.
[11] P. Papadimitratos and Z. J. Haas, “Securing the internet routing

infrastructure,” IEEE Communications Magazine, vol. 40, no. 10, pp.
60–68, Oct. 2002.

[12] B. Kumar and J. Crowcroft, “Integrating security in inter-domain routing
protocols,” ACM SIGCOMM Computer Communication Review, vol. 23,
no. 5, pp. 36–51, 1993.

[13] S. L. Murphy and M. Badger, “Digital signature protection of the OSPF
routing protocol,” in Proc. Symp. Network and Distributed Syst. Security.
IEEE, 1996, pp. 93–102.

[14] H. D. Johansen, R. V. Renesse, Y. Vigfusson, and D. Johansen, “Fireflies:
A secure and scalable membership and gossip service,” ACM Trans.
Comput. Syst., vol. 33, no. 2, pp. 5:1–5:32, May 2015.

[15] D. Dolev, E. N. Hoch, and R. Renesse, “Self-stabilizing and byzantine-
tolerant overlay network,” in Proc. 11th Int. Conf. Principles of
Distributed Systems (OPODIS), E. Tovar, P. Tsigas, and H. Fouchal,
Eds., 2007, pp. 343–357.

[16] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S. Wallach,
“Secure routing for structured peer-to-peer overlay networks,” SIGOPS
Operating Syst. Review, vol. 36, no. SI, pp. 299–314, Dec. 2002.

[17] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin, “BAR gossip,” in Proc. 7th Symp. on Operating Syst. Design
and Implementation, 2006, pp. 191–204.

[18] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee, and R. A. Olsson,
“Detecting disruptive routers: A distributed network monitoring approach,”
IEEE Network, vol. 12, no. 5, pp. 50–60, 1998.

[19] S. Cheung and K. N. Levitt, “Protecting routing infrastructures from
denial of service using cooperative intrusion detection,” in Proc. Workshop
on New Security Paradigms, 1997, pp. 94–106.

[20] J. Deng, R. Han, and S. Mishra, “INSENS: Intrusion-tolerant routing for
wireless sensor networks,” Computer Communications, vol. 29, no. 2,
pp. 216–230, 2006.

[21] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. Andersen,
“SCION: Scalability, control, and isolation on next-generation networks,”
in IEEE Symp. Security and Privacy (SP), May 2011, pp. 212–227.

[22] R. Obelheiro and J. Fraga, “A lightweight intrusion-tolerant overlay
network,” in 9th IEEE Int. Symp. Object and Component-Oriented Real-
Time Distributed Computing (ISORC), April 2006, pp. 8–15.

[23] R. R. Obelheiro and J. d. S. Fraga, “Overlay network topology
reconfiguration in byzantine settings,” in Proc. 13th Pacific Rim Int.
Symp. Dependable Computing (PRDC), Dec 2007, pp. 155–162.

[24] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure byzantine resilient routing protocol for
wireless ad hoc networks,” ACM Trans. Information and Syst. Security,
vol. 10, no. 4, pp. 6:1–6:35, Jan. 2008.

[25] Y. Amir, P. Bunn, and R. Ostrovsky, “Authenticated adversarial routing,”
in Proc. 6th Theory of Cryptography Conf (TCC), 2009, pp. 163–182.

[26] F. Cristian, H. Aghili, R. Strong, and D. Dolev, “Atomic broadcast:
From simple message diffusion to byzantine agreement,” Information
and Computation, vol. 118, no. 1, pp. 158 – 179, 1995.

[27] R. Perlman, “Network layer protocols with Byzantine robustness,” Ph.D.
dissertation, Massachusetts Institute of Technology, 1989.

[28] ——, “Routing with Byzantine robustness,” Sun Microsystems, Inc.,
Mountain View, CA, USA, Tech. Rep. SMLI TR-2005-146, 2005.

[29] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” in Proc. Symp. Operating Syst. Principles, 2001, pp.
131–145.

[30] Y. Amir and C. Danilov, “Reliable communication in overlay networks,”
in Proc. IEEE/IFIP Int. Conf. Dependable Syst. and Networks, June
2003, pp. 511–520.

[31] A. Newell, D. Obenshain, T. Tantillo, C. Nita-Rotaru, and Y. Amir,
“Increasing network resiliency by optimally assigning diverse variants to
routing nodes,” in Proc. 43rd IEEE/IFIP Int. Conf. Dependable Systems
and Networks, 2013, pp. 1–12.

[32] J. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2, pp.
125–145, 1974.

[33] D. Sidhu, R. Nair, and S. Abdallah, “Finding disjoint paths in networks,”
in Proc. Conf. on Commun. Architecture & Protocols, 1991, pp. 43–51.

[34] J. C. Corbett et al., “Spanner: Google’s globally distributed database,”
ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22, Aug. 2013.

[35] D. Obenshain, “Practical intrusion-tolerant networking,” Ph.D. disserta-
tion, Johns Hopkins University, 2015.

[36] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz, “Profile-
guided automated software diversity,” in IEEE/ACM Int. Symp. Code
Generation and Optimization (CGO), Feb 2013, pp. 1–11.

[37] M. Castro and B. Liskov, “Practical Byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398–
461, Nov. 2002.

[38] E. Rescorla and N. Modadugu, “Datagram transport layer security,”
Internet Requests for Comments, RFC Editor, RFC 4347, April 2006.
[Online]. Available: www.rfc-editor.org/rfc/rfc4347.txt

[39] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[40] H. Krawczyk, R. Canetti, and M. Bellare, “HMAC: Keyed-hashing
for message authentication,” Internet Requests for Comments,
RFC Editor, RFC 2104, February 1997. [Online]. Available:
www.rfc-editor.org/rfc/rfc2104.txt

[41] “FIPS PUB 180-4: Secure hash standard,” US Department of Commerce,
National Institute of Standards and Technology, 2012.

[42] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP congestion
control with a misbehaving receiver,” SIGCOMM Computer Communi-
cation Review, vol. 29, no. 5, pp. 71–78, Oct. 1999.

[43] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[44] “OpenSSL project,” www.openssl.org, access: 2015-12-15.
[45] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru, “Turret: A

platform for automated attack finding in unmodified distributed system
implementations,” in IEEE Int. Conf. Distributed Computing Syst., June
2014, pp. 660–669.


